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Abstract-This paper is devoted to the determination of the acoustic characteristics of a porous
medium saturated by air. The analysis of sound propagation in such a medium is performed using
an homogenization technique. This theory is suitable since acoustic wavelengths are much greater
than the usual pore size. The macroscopic descriptions involve the effects of air viscosity, inertial
forces and heat transfer.

The first part of the paper deals with single porosity materials. Two cases are investigated: (i)
a medium with large pores in which thermal exchanges are negligible; (ii) a medium with smaller
pores for which thermal exchanges must be accounted for.

The second part is concerned with dual porosity media, i.e. when the grains themselves are also
porous. Neglecting heat transfer first yields a simplified macroscopic description. This simply dual
porosity model is then improved by considering thermal effects.

These results show that new porous materials could be evolved by introducing a microporosity
structure that would give enhanced absorption properties over a wide range of frequencies. © 1998
Elsevier Science Ltd. All rights reserved.

I. INTRODUCTION

Dry porous media, i.e. media saturated by air, present interesting acoustic properties for
reducing the level of ambient noise. Inside buildings, such media are now very frequently
used as wall lining. On the outside, the design of anti-noise walls, for instance, takes
advantage of these properties to reduce sound intensity in the vicinity of railways or
motorways. The materials used for this purpose are often coarse, made of granular aggre­
gates and have a pore size ranging from few millimetres to few centimetres. Another
example is that of porous road surfacing used in road engineering. These materials, which
present a large intrinsic permeability (10- 9 m2

) are known for decreasing traffic noise from
20--10 dB (Bar and Delanne, 1993).

The key point about absorption is that when an acoustic wave arrives on a previous
surface, air is pushed within the pores. Therefore, only a partial reflection of the wave
occurs, and the transmitted wave is damped. The description of these phenomena requires
the physical analysis of gas flow in the pores. The reader is referred to Allard (1993) for a
detailed presentation of these aspects.

In this paper we use the four main following hypotheses:
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(i) the porous skeleton is assumed to be perfectly rigid because of the weak level of
acoustic pressure,

(ii) air is considered as a viscous fluid and its flow in the pores is governed by Navier­
Stokes equation,

(iii) air compressibility is affected by thermal exchanges with the solid, which are described
by Fourier's equation,

(iv) since acoustic motions are very small, convection or advection effects are negligible,
so that the non-linear terms are ignored.

In order to derive the acoustic behaviour of such a medium, we use the homogenization
method developed by Sanchez-Palencia (1980). The two fundamental assumptions which
have to be satisfied for applying this method are firstly, the existence of a representative
elementary volume (REV) and secondly, the separation of scales, which imposes the
condition that the macroscopic size-here the acoustic wavelength-must be much greater
than the characteristic size of the REV.

Basically, the homogenization technique is an asymptotic method based on two space­
variables, i.e. one for each scale. The macroscopic description which corresponds to the
first significant order, is an approximation of the real behaviour. An estimation of the
accuracy of the homogenized behaviour is given by the scale ratio of the macroscopic
characteristic length to the macroscopic characteristic length.

This approach initially developed for solving two scale problems was recently extended
for solving three scale problems by Auriault and Boutin (1993-1994). In the present work,
both circumstances are considered since we focus on single porosity materials in the first
part (two scales) and on dual porosity media, i.e. when the solid matrix material is also
porous (three scales), in the second part.

In Section 2, two models for single porosity media are presented. We first consider the
case of coarse materials having large pores, so that the assumption of adiabatic per­
turbations in air is valid. The macroscopic description can be compared to Biot's theory.
However, since the solid is rigid, the only acoustic wave is of the Pz type (Biot, 1956). For
finer materials, thermal exchanges have to be taken into account. The homogenization
approach leads to the same model as that presented by Attenborough (1983). This descrip­
tion includes two dissipative effects, one due to the viscosity and the other due to thermal
non-equilibrium, and is in close agreement with the measurements performed on porous
materials, for example by Allard et at. (1993).

In Section 3, the possibility of enhancing absorption properties by considering dual
porosity media is investigated. In this case the grains of the skeleton are also assumed to
be porous. This configuration can easily be realised for coarse materials. The following
analysis also allows to investigate the case where there is a wide range of pore-sizes.

Modelling dual porosity media has already been performed in petroleum engineering,
in order to model fractured porous reservoirs. The first work on quasi-static flow through
dual porosity reservoirs was developed by Barenblatt et at. (1960) using a phenomenological
approach. Statics and dynamics in such media were treated using an homogenization
method in Auriault and Royer (1993), Royer and Auriault (1994), Royer et at. (1996),
Royer (1994), Boutin (1994), Auriault and Boutin (1993-1994). It was proved in these
latter papers that the most interesting case is obtained when scale ratios between wavelength
and pores, and between pores and micropores are identical. The question of dual porosity
media within the context of acoustics has already been tackled in Boutin et at. (1996). To
our knowledge, this was the first study on the subject. The models which are presented in
Section 2 (single porosity media) are no longer valid when there is a microporous system.
In effect, the physics in the micropores is different from that in the pores.

Firstly, a simple macroscopic model of dual porosity is derived by assuming adiabatic
perturbations for air in the pore space, and isothermal conditions in the micropore space.
The difference between this model and the single porosity model is the coupling of air flux
between pores and micropores, which is related to the diffusion of the pore pressure in the
micropores. This phenomenon shows memory effects that results in an additional dis­
sipation effect at high frequencies. Then, the description is improved by taking thermal
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exchanges into account in both pores and micropores. At high frequencies, this provides
another dissipation term due to the thermal non-equilibrium in the micropores. Finally,
the characteristic frequencies associated with the different contributions to dissipation
(viscosity, thermal exchanges, pressure diffusion) are calculated for two distinct dual
porosity configurations. Two simple numerical results are presented.

2. SINGLE POROSITY MEDIUM

In this section we deduce the acoustic properties of a single porosity medium by using
the homogenization method. For the sake of simplicity we proceed in two steps. In the first
part we consider a medium with large pores, for which the adiabatic approximation can be
applied. In the second part, we develop the model to include the effects of thermal exchanges.
The study is conducted under harmonic regime.

These results and their derivation will be used again in Section 3 for modelling dual
porosity systems. For this purpose, the homogenization procedure is presented in detail in
the present section.

2.1. Modelling sound propagation through a rigid single porosity medium

2.1.1. Medium description. The first main assumption, which is common to all homo­
genization methods, is the existence of a representative elementary volume (REV). With
the method of homogenization for periodic structures, it is also assumed that the medium
is periodic, and therefore, that the REV is the periodic cell.

Thus, consider the medium to be O-periodic and the period characteristic length to be
I. The solid and the pores occupy the domains Os and Op, respectively, and their common
boundary is r (Fig. 1).

4> = 10pi is the porosity.
101

1 i .<.>0 = TOT .dO denotes the average over the penod
Op

The second main assumption is the separation of scales. It means that the microscopic
characteristic length I must be small compared to the macroscopic size of the volume and
to the wavelength. Let L be the macroscopic characteristic length. Therefore, L is the
smallest length between the macroscopic size of the volume and the wavelength. In acoustics,
L can be related to the wavelength by the following equality (Boutin and Auriault, 1990):

A
L=­

2n

The separation of scales is expressed as follows:

1
B=-« 1

L

2.1.2. Governing equations. At the pore scale, the flow of air through Op is governed
by the momentum balance equation, the mass balance equation, the air state equation and
the adherence condition on the boundary r.

In this work, all non-linear effects (convection, advection) are neglected. This assump­
tion is justified by the low level of pressure which, in the context of acoustics, induces very
small perturbations.

To know the thermodynamical conditions of the system, the pore size must be com­
pared to the thickness D, of the thermal layer, in which thermal exchanges may occur. Under
harmonic regime at pulsation w, D, is defined as follows:
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Fig. I. Single porosity medium: description of the periodic cell at the pore scale.

where pe is the density, cp is the specific mass capacity and K is the thermal conductivity of
the medium under consideration. Typical thermal characteristics are shown in Table 1.

Table 1. Typical thermal characteristic in air and in the grains

Air
Grains

K (WjmK)

0.026
1.4

p (kg/m')

1.23
2500

Cp (JjKg)

1000
837
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In the acoustic domain defined by

50Hz <I< 20kHz V= :)
the thermal layer thickness in air and in the grains are such that:

Air: 13 pm < b, < 0.26 mm

Grains: 2.3 pm < b, < 46 pm

4713

In this section we assume the medium to be made of large pores, as it is typically the case
in porus road surfacing. For a characteristic pore size I::::: I mm, the condition bt < I is
checked for each constituent and thus, thermal exchanges can be neglected. As a result, air
can be considered as being in adiabatic conditions. Hence, we have the following relation­
ship between pressure and density variations:

p p
-=y­
pe pe

where y is the specific heat ratio, pe and pe are the pressure and the density at the equilibrium,
and P and p are pressure and density variations, respectively.

Thus the governing equations are the following:

Momentum balance (linearized Navier-Stokes equation) in Op

av
pAV+(A+p)V(V ·v)-VP = pe at (1)

where v is the velocity, and p and A are the shear and the volume viscosities of air,
respectively.

Mass balance (continuity equation) in Op

Air state equation (adiabatic)

Adherence condition on r

dp
- +pev·v = 0
dt

pe
P=-yp

pe

vir = 0

(2)

(3)

(4)

2.1.3. Dimensionless numbers. The objective is to express the governing equations in a
dimensionless form. For this purpose, we may estimate the dimensionless numbers intro­
duced by both balance eqns (1), (2):

I~I
s=---

Ipev ·vl

To evaluate these numbers, we use P and Va characteristic values of the acoustic pressure
amplitude and of the velocity, respectively. From the physical point of view, the flow is
forced by the macroscopic pressure gradient. Then, we have:
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In addition, since the flow occurs in the pores, the viscous forces are such that:

Since we consider harmonic perturbations at pulsation OJ, the order of magnitude of the
inertial term is given by:

ov
pe _ = O(peOJ V)at

Finally, since we investigate sound propagation with a wavelength A = 2nL, the volume
variation of air is estimated by:

Ipe(v 'v)1 = 0 (P~1

Let us consider the situation of greatest interest, which is when the three forces in Navier­
Stokes equation are of the same order of magnitude. In other words, the pressure gradient
is balanced by both viscous and inertial terms.

From this we deduce:

P

L
V = 0(1),

/l12

pe ov = 0 (~)at L

Let us note that this latter assumption means that the thickness of the viscous skin:
bv = J /llpe OJ is of the order of the pore size. This is in good agreement with reality since
the kinematic air viscosity is:

which, in the acoustic range of frequencies (50 Hz-20 kHz), gives:

As for S, since spatial volume variations are balanced by time density variations, we have:

(
pe v)

Ipe(v 'v)1 = 0 L = O(OJp)

Now, we choose the macroscopic characteristic length L as reference length. The values of
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Q, Rt and S are then designated by QL, RtL and SL, respectively, and their expressions are
the following:

(
pe

WL
2

)RtL=O --,
Jl

SL = o(wp)peV
L

Therefore, considering the above physical analysis, we get:

QL = 0(e- 2
)

RtL = 0(e- 2
)

SL = 0(1)

Thus, when cast in dimensionless form with L as reference length, the governing equations
for harmonic pulsations are written as follows (the term eiWI is omitted) :

iwp+peV .v = 0

pe
P=-yppe

vir = 0

(5)

(6)

(7)

(8)

Notice that all quantities are now dimensionless quantities, but for the sake of simplicity,
we keep the same notations.

As a result of the separation of scales, two independent dimensionless space variables
can be defined. Let X be the physical space variable of the system. We define:

• y = XII as being the microscopic dimensionless space variable
• x = XIL as being the macroscopic dimensionless space variable

Pressure, velocity and density fields are, a priori, functions of both variables.
The gradient operator V is a scaled and dimensionless quantity as well. It may now be

written as follows:

2.1.4. Homogenization. The upscaling process may now be performed. The variations
of pressure, velocity and density amplitudes are looked for in the form of asymptotic
expansions in power of e :

P(x, y) = eO pO(x, y) +e1pi (x, y)+e2P2(X, y) + ...

v(x,y) = eOvO(x,y)+elvl(x,y)+e2v2(x,y)+'"

p(x, y) = eO pO(x,y) +e1pi (x, y) +e2p2(x, y)+'"

where pi, Vi and / are a-periodic, with respect to the variable y.
These expansions must now be introduced in the dimensionless set of eqns (5)-(8).

Then the boundary-value problems at the successive orders of e (defined over the periodic
cell), must be resolved so as to derive the macroscopic description.
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From eqn (5), we get at the first two orders 0(8- 1
) and 0(8°):

(9)

(10)

Similarly, we get from (6) :

At the first order, eqn (7) gives:

Finally, the adherence condition (8) gives:

We may now proceed to solve the successive boundary-value problems.
From eqns (9) and (13) it is clear that:

(11)

(12)

(13)

(14)

(15)

(16)

Equations (10), (11) and (14) describe the dynamic flow of an incompressible viscous fluid
in a porous cell. This specific problem involves dynamic permeability and was solved by
Levy (1979) and Auriault (1980). The velocity V

Ois expressed as:

(17)

where k is a complex valued tensor which depends on the local variable, Y, and also on the
dimensionless pulsation w/we> where We is the characteristic pulsation, of the order of /1/pCp.

Now, considering the n-periodicity of VI together with the adherence condition (14)
and then integrating eqn (12) over the period yields:

(18)

where

(19)

and

Equations (13), (18) and (19) describe acoustics of a medium made of large pores saturated



Acoustic absorption of porous surfacing with dual porosity 4717

by air. II is the dynamic permeability tensor. Combining these three equations, the macro­
scopic description can be rewritten as follows:

4Jiw (II)_po _ V . -V pO = 0
ype x f.1 x

(20)

2.1.5. Properties off(. The acoustic features of the system are related to the properties
of the dynamic permeability K. These properties are described in detail for example in
Auriault et al. (1985) or in Sheng and Zhou (1988) for a medium saturated by a liquid. The
main results are summarised below for the case of an isotropic medium.

At low frequencies, viscous effects are predominant and K tends towards the real­
valued intrinsic permeability: K(O) = O(4J12

). Thus, in this case we find the classical Darcy's
law. K(O) is related to the flow resistivity, (J, that is commonly used in acoustics, by:

(J = f.1/K(O).

At high frequencies, inertial effects dominate and then K tends towards a pure imagin­
ary value: K( 00) = 4Jf.1/iwpe(Xoc;. Hence, at high frequencies, the dynamic Darcy's law tends
towards a classical dynamic equation in which air density is corrected by the tortuosity (xoo,

which highlights the influence of the "added" mass. Low and high frequency domains are
delimited by a critical frequency value which is of the order of O(f.1/peI2). A more accurate
estimate of this frequency is obtained by equalising viscous and inertial effects of the
macroscopic flow:

(21)

The dynamic permeability may be related to the effective density-which is commonly used
in acoustics-by the following equality:

(
w) 4Jf.1 1

Peff We = K(:J' iw

Using dimensionless quantities, this can also be expressed in the simple form:

iw*p*K* = 1

where

K
K* = K(O)

Analytical expressions can be derived for very simple duct geometries (Biot, 1956). For any
pore geometry, Allard et al. (1993) have proposed an expression for p*, which gives the
correct asymptotic behaviour at low and high frequencies and includes the viscous layer
effects:
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Jl+iw*/F2

p* = 1+--'-------­
iw*

(22)

where F is a shape ratio ranging from j2 (for cylindrical pores) to 4, with respect to the
pore geometry (Sheng and Zhou, 1988).

2.1.6. Wave propagation. The complex valued acoustic velocity C(w) may directly be
deduced from eqn (20). In the isotropic case we get:

(23)

where Ca is the sound velocity and is defined by:

~
ype

Ca= ­
pe

At low frequencies, we get:

which shows that the waves are diffusive. Then, the attenuation per wavelery&h tends
towards one, whereas the rate of damping per metre increases with respect to -J w*.

At high frequencies, the acoustic celerity can be approached by :

Ca [ I {J;JC(w)~ .1-- -.-Ja oc 2F lW*

Therefore, in this case the waves are propagative and attenuated. The tortuosity reduces
the celerity. The attenuation per wavelength decreases with respect to ~, whereas the
rate of damping per metre increases with respect to ~.

2.2. Adding thermal effects
The above adiabatic analysis is valid for large pores. For a more general description,

and in particular for smaller pores, say I :%; 0.5 mm, thermal effects must be accounted for.

2.2.1. Heat transfer equations. We may incorporate the equation of heat conduction
together with the air state equation:

(24)

(25)

where T' is the equilibrium temperature.
In order to express the boundary conditions at the solid-air interface, let us preliminary

estimate Tn the order of magnitude of the temperature variation in the skeleton. On r, the
temperature gradient is of the order of T,/b ,s and T/b,g in the solid and in air, respectively.
Thus, the flux continuity sets that:
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KsT.s _ (Kj--0 -
(i" (itg

from which we deduce:

4719

The air thermal impedance is much smaller than the solid thermal impedance (Table 1). As
a result, Ts is very small compared to T. Therefore, it will be assumed hereafter that the
skeleton remains under isothermal conditions and that thermal effects are significant only
in the pores. As a consequence, the thermal boundary conditions may be expressed as:

T/r =0 (26)

Now, eqns (24) and (25) may be scaled. The relative variations of pressure, temperature
and density are of the same order of magnitude. Therefore we have:

O(~)=O(~)=O(~)pe Te pe

and, as a consequence,

Thus, the only dimensionless number to be estimated is:

N = --C.1_iw-,-p_ec--,,-p_T-,-1

IV'(KVT)I

Since thermal exchange are assumed to occur at the pore scale, conduction and transient
terms in eqn (24) are of the same order of magnitude, which expresses the fact that the
thickness of the thermal layer is of the order of the pore size:

As above, the reference length is the macroscopic characteristic length, L. We get:

2.2.2. Macroscopic behaviour. As in 2.1, the set of local dimensionless equations com­
prises eqns (5), (6) and (8). The adiabatic state eqn (7) is replaced by eqn (25), and finally,
eqns (24) and (26) must be added to the set to account for thermal effects. There is an
additional unknown, T, which, like the other unknowns is looked for in the form of an
asymptotic expansion in power of e :

From eqns (24) and (26) at the orders of 0(e- 2
) and 0(1), respectively, the following

problem arises:
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(
K TO) TO ( I) pOV' --V - --= - 1-- -

Y iwpecp Y Te Te y pe (27)

(28)

This heat transfer problem in the periodic cell has already been solved for example in
Auriault (1983) and Boutin and Auriault (1993). The solution can be written in the following
form:

Te ( I)TO = - 1- _ gpO
pe y

where g is a complex valued function which depends on the local variable y and on the
dimensionless pulsation wlw" where w, is a characteristic thermal pulsation which is of the
order of O(KWpeCp).

Now, considering eqn (25) at the first order gives:

(29)

Equation (17), that gives the expression of V
O is still valid, but the integration of eqn (12)

over the period is altered. Instead of eqn (18), we get:

where

and

pope I i
<pO)n = cP[(y-(y-I)G]-, G = -IA I gdO

ype Up n
p

(30)

(31)

(32)

Equations (30)-(32) give the macroscopic behaviour. Eliminating the density and the
velocity, the macroscopic description can be rewritten as follows:

(33)

2.2.3. Comments. Equation (33) shows that the acoustic characteristics of the system
depend on the tensor Kand on the function G. The properties of K remain the same as in
the case of large pores (see paragraph 2.1.5). The complex valued function G describes the
frequency dependence of the thermal exchanges and the term [1-(l-lly)G]lpe gives the
macroscopic effective complex valued compressibility.

At low frequencies, transient thermal effects become negligible. Thus, considering the
isothermal condition for the solid, the temperature variation tends towards zero. G(O) = 0
and the effective compressibility tends towards the isothermal compressibility (llpe).

At high frequencies, conduction effects are negligible except in close proximity to the
solid. The perturbations occur in an adiabatic way in air. G( 00) = I, and the compressibility
tends towards the adiabatic value (1/ype).
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At medium frequencies, i.e. for pulsations of the order of KIf pecp , there is a phase shift
between temperature and pressure, and hence between density and pressure. Consequently,
the effective compressibility is complex. A more accurate expression of the thermal charac­
teristic pulsation is obtained by introducing the length A" defined as the ratio of the volume
to the surface (Champoux and Allard, 1991):

Ie
W,=---

A;pecp

For spherical or cylindrical pores, G can be expressed analytically (Attenborough, 1983;
Auriault, 1983). For other geometries, the following expression gives the correct asymptotic
behaviour at low and large frequencies (including the thermal layer effects) (Allard et at.,
1993):

(34)

where w~ is the dimensionless thermal frequency: w~ = wlw, and where F, is a shape ratio
of the pore structure (P, = 2 for cylindrical pores and F, = 5/3 for spherical pores).

The velocity of harmonic waves is determined from eqn (33). For isotropic cases we
get:

iK*w*
C 2 = C 2-----­

a O!C()[y-(y-l)G]
(35)

Notice that the macroscopic description includes two dissipative effects, one due to the
viscosity, the other one due to thermal exchanges. However, the thermal dissipation is
smaller than the viscous dissipation and has a more limited range of frequencies. The
thermal contribution to the rate of attenuation per wave length (i.e. to the rate of damping
per metre) is directly related to the phase (i.e. to the imaginary part) of the complex valued
compressibility .

From the preceding analysis, these effects are maximum for pulsations close to w,. It
is important to note that whereas viscous and thermal layer thicknesses are of the same
order in air, bulb, = J j1cp /K = 0.877, the characteristic frequencies associated with viscous
and thermal dissipation can be very different. As a matter offact, the permeability essentially
depends on the small ducts in the media, while thermal effects involve all the pores. In
consequence we have the inequalities:

This approach is in agreement with the phenomenological approaches of Attenborough
(1983) and Allard et at. (1993). In the next section, the possibility of enhancing absorption
properties by considering dual porosity media is examined.

3. DUAL POROSITY MEDIUM

In this section, we consider the case where the grains of the skeleton are also porous,
with an open porosity ¢'. In other words, Os is a porous system. Obviously, the role of this
secondary porosity depends on the size of the micropores. If the micropore size is of the
order of the pore size, there is no distinction between both porous systems. Thus, considering
the whole porosity ¢+(l-¢)¢', the description above can still be applied. Now, if the
micropores are very much smaller than the pores, the grain permeability is very low. Then,
the grains seem to be impervious, and the above description is valid again, considering only
the largest pores. The case of interest, which is studied below, is obtained when the scale
ratio of the micropore size to the pore size is identical to the scale ratio of the pore size to
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the wavelength (see for example Auriault and Royer, 1993; Royer and Auriault, 1994;
Auriault and Boutin, 1993-1994).

3.1. Modelling sound propagation through a rigid dual porosity medium

3.1.1. Medium description. The description of the pores remains the same as before.
However, since the grains are now porous, we have to describe their microstructure. Here
again we consider that the microporous system has a periodic distribution. We assume that
the micropores are connected to each other and to the pores. The characteristic length r of
the microporous period 0' is related to the pore size and to the macroscopic size by:

r (I)1=0 L = O(e) (36)

At the micropore scale, the period 0' consists of the solid and the micropores which occupy
the domains 0;" and n;, respectively, and their common boundary is r' (Fig. 2).

A.' \n;,,\ . h· .
'I' = 10;1 IS t e mlcroporoslty

<. )0· = I~sl In:" .dO is the average over the micropore periodic cell

<.)0 = I~I In
p

• dO is the average over the pore periodic cell

3.1.2. Governing equations. For the sake of simplicity, thermal effects are neglected in
this part. The difference of both thermal regimes in the pores and micropores is accounted
for by assuming the porous system to be in adiabatic conditions, and the miroporous system
to be in isothermal conditions. Thus, the air state equation in the micropores is written as
follows:

pe
Pm = -Pm

pe

Since the boundary of the grains, r, is not impervious, the adherence condition (4) is no
longer valid. The actual boundary conditions must now express the continuity of pressure
and flux (Auriault and Boutin, 1993-1994).

The governing equations are the following, where k = m in the micropores and k = P
in the pores:

Momentum balance (Navier-Stokes equation)

Mass balance (continuity equation)
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I'..
Fig. 2. Dual porosity medium (the grains are microporous): description of both periodic cells at

the pore scale and the micropore scale.

Air state equations

pc
=-Pm

pc
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Boundary conditions on r

Adherence condition on r'

C. Boutin et al.

3.1.3. Dimensionless numbers in the pores. Considering (36), the permeability of the
microporous grains is smaller than the pore permeability. Thus, air velocity through the
grains is small in comparison with air velocity between the grains. Therefore, the physics
of a single porosity medium remains valid in the pores of a dual porosity medium. Hence,
estimations made in Section 2.1.4 are still valid at the pore scale:

3.1.4. Dimensionless numbers in the mieropores. We have now to estimate the dimen­
sionless numbers for the microporous system, QmL, RtmL and SmL' For this purpose, let us
first describe the physics at this scale.

At its boundary, a microporous grain is submitted to a uniform harmonic pressure.
Therefore, the continuity of stress does impose that:

One the one hand, as a result ofair compressibility, this pressure leads to a volume variation
in all the micropores of a given grain. Thus:

(rv)wPp=O T

Using estimations in the pores gives the relative order of magnitude of velocities:

(WIPm ) (WIPp) (I)V =0 -- =0 - =0 V-m pe pe p L

So, we have:

(37)

which expresses the fact that the air velocity is much greater in the pores than in the
micropores. On the other hand, the flux in the micropores is dominated by viscous effects
which induce a pressure gradient. The balance of these two terms gives:

so that

,uVm = O(IVP I)
['2 m

(38)
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(39)

This means that the pressure is non-uniformly diffused in the microporous grains.
Using the previous physical analysis, we can now estimate the dimensionless numbers.

Considering Land Vp as characteristic length and velocity, respectively, we deduce that:

[

P ]L -2

QmL = 0 ~p = 0(<; )

Since the transient Reynolds number has the same definition as at the pore scale, we have:

Finally, the estimation of the Strouhal number in the micropores, is given by:

(
pe v )IpeV'vml=O -----f =O(wp)

Hence, we deduce:

SmL = 0 ( wp ) = 0(1)
pev

p

L

3.1.5. Dimensionless equations. Therefore, the dimensionless governing equations for
harmonic pulsations are:

p e

Pm =-Pm
pe

(40)

(41)

(42)

(43)

(44)

(45)

(46)

In comparison with the single porosity case (see paragraph 2.1.3), we have to introduce a
third dimensionless space variable for the micropores.
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x
z=-r

The dimensionless gradient operator V may now be written as follows:

3.1.6. Homogenization. Each variable is looked for in the form of asymptotic expan­
sions in power of e :

p m(x, y, z) = eOP~(x, y, z) +e 1 p ~(x, y, z) +e2P~,(X, y, z) + ...

vm(x,y,z) = elv~(x,y,z)+e2v;(x,y,z)+'"

Pm(x, y, z) = eOp~(x, y, z) +6 1p~(X, y, Z) +e2p;(X, y, Z) + ...

Pp(X,y) = eOP~(x,y)+elP~(x,y)+e2p;(x,y)+'"

Vp(X,y) = eOv~(X,Y)+6IV~(x,y)+e2v;(x,y)+···

pp(X,y) = 60p~(X,y)+elp~(x,y)+e2p;(x,y)+'"

All these quantities are O-periodic, with respect to the variable y. The quantities related to
the micropores are also 0'-periodic, with respect to the variable z. Introducing these
expansions in the set of eqns (40)-(46), gives the following governing equations at the first
significant orders.

In the micropores

Equation (4) and 0(e- 2
) and O(e- I

)

(47)

(48)

Equation (41) at O(C I
) and O(eO)

Equation (43) at O(eO) and 0(6 1
)

pe
pO = _pO

m pe m

pe
pi =_pl

m pe m

(49)

(50)

(51)

(52)
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On the boundary r'
Equation (46) at 0(e1

) and 0(e2
)

V~/r' = 0

v?n/r' = 0
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(53)

(54)

In the pores

Apart from the boundary conditions, we obtain the same set of equations as in the case of
single porosity. The only difference is that variables are now indexed by p. Navier-Stokes
equation (40) at O(e l

) and O(eO) leads to (9) and (10), respectively. Mass balance eqn (41)
at O(e- I

) and O(eO) gives (11) and (12). Equation (42) at O(eO) corresponds to (13).

On the boundary r
Equation (45) at O(eO

) and O(e l
)

Equation (44) at O(eO
) and 0(e1

)

P~ = P~ (55)

(56)

(57)

(58)

The approach to the solution comprises three stages. The flow in micropores and pores are
successively analysed and finally the coupling flux between both scales is derived.

In the micropores

Equations (47) and (51) give:

P~ = P~(y,x)

p~ = p~(y,x)

Equations (48), (49) and (53) lead to a classical steady-state Darcy's flow in the micropores:

(59)

This set of equations also determines P ~l and then p~ is defined by eqn (52).
Integration of (50) over the micropore period yields the mass balance in this domain:

(60)

Now, using eqn (51) and averaging eqn (59) gives the equation governing the pressure
variation in 0, :

<jJ'iw ° (Km 0)--Pm-Vv' -VvPm = 0
pe . f.l'

(61)

where Km= <km)n' is the steady flow intrinsic permeability of the microporous system.
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In the pores
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The resolution process is exactly the same as in Section 2.1.5. We successively get:

P2 = P2(x) (62)

p2 = p2(x) (63)

VO = _ kpv pO (64)
p I.l x p

However, the macroscopic mass balance obtained by integrating eqn (12) over Qp, gives
now:

(65)

which can also be written:

In order to determine the additional term due to v~, we must go back to the micropore
scale. The actual pressure distribution in n, is defined by eqns (61), (62) and (55), which
give the following boundary-value problem:

Using the pressure difference, this problem can be rewritten in the following equivalent
form:

P' = P~-P2

¢;~ (P'+P2)-Vy · (~mVyp') = 0 in Q s

P' = 0 on r

It turns out that the pressure difference is governed by a diffusion equation with a forcing
term. Note that this boundary value problem looks like the heat transfer problem enco­
untered in eqns (27)-(28) for the temperature field. We deduce that the pressure fields in
the micropores and in the pores are related by:

P' = -nP2

where the function n(y) is a complex, depends on the local variable y and on the dimen­
sionless pulsation W/Wd' where Wd is a characteristic diffusion pulsation, which is of the
order of KmYWI.l¢'. Then, equation (61) can be written as follows:
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(66)

Finally, the expression of <Vy'v; > n is derived by considering the boundary condition
(58) and integrating (66) over Os:

where

n = I~sl In, n(y) dO

Thus, the macroscopic description is given by:

[tjJ +ytjJ'(l- tjJ)(l-ll)] iW, p~ -Vx ' (Kp Vxp~) = 0
yr fl

(67)

3.1.7. Comments. The difference between the dual porosity model (67) and the single
porosity model (20) consists of a modification of the porosity to a new complex valued
term. This latter corresponds to the influence of air saturating the whole micropores of the
grains. It highlights a coupling effect between pore and micropore air fluxes, which is due
to the diffusion of the pore pressure in the micropores. This phenomenon is expressed by
the complex valued function n, which depends on the dimensionless pulsation w: = W/Wd'
where the characteristic diffusion pulsation Wd is of the order of KmpeWfltjJ'. As observed
above, the pressure diffusion problem is exactly of the same kind as the heat transfer
problem. Therefore the properties established for G are also valid for n.

At "low" frequencies, the transient diffusion effects are negligible. Therefore, the
micropore pressure is uniformly equal to the pore pressure, so that ncO) = 0 and the total
gas volume contributes to the compressibility. Note that the dynamic Darcy's law affects
the pore volume only. As a result, this description does not reduce to a single porosity.

At "high" frequencies the diffusion affects air only in the vicinity of the pore walls.
The pressure does not vary in the micropores, which gives IT((0) = 1. We recognise the
single porosity behaviour.

At "medium" frequencies, i.e. for pulsations of the order of Wd, there is a phase shift
between pressure and velocity in the micropores, leading to a complex value for IT. As for
w" an improved expression of Wd can be obtained by introducing the length Ad defined as
the ratio of the grain volume to the surface:

Obviously, At and Ad are related by:

The physical meaning of this characteristic pulsation is that, when W = W d, the thickness of
the diffusion layer (JKmpe /WfltjJ') equals the grain size. Let us notice that we have:
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In air, /-i/J pepe ~ 10- 7 m, and consequently, for usual values of the micropore sizes:

Therefore, at the macroscopic scale, a new dissipation effect appears at higher frequencies.
For the same reasons as for thermal dissipation, the influence of diffusion is limited in the
frequency range and its effects are maximum for pulsations close to Wd'

Finally, like G, n may be expressed analytically for spherical or cylindrical grains. For
other micropore geometries, the expression below gives the correct asymptotic behaviour
at low and large frequencies:

(68)

where Fd is the shape ratio of the grain structure (£II = 2 for cylindrical grains and Fd = 5/3
for spherical grains).

In isotropic cases, the expression of the complex valued acoustic velocity is:

(
iK*W*) [ (I ,/..),/..' J~ I

C 2 = C,; ~ 1+ ; 'I-' y(1-ll)

The comparison with eqn (23)-which is valid for single porosity media under adiabatic
conditions-shows that this complex valued celerity presents the same behaviour at high

frequencies (w» Wd), but is augmented by a factor Jl + [(1- ¢)¢'I¢]y at low frequencies
(w « Wd)' For the same reasons as for the thermal dissipation, the influence of the micro­
porosity on the attenuation is maximum for pulsations close to Wd'

3.2. Adding thermal effects
The preceding description may be improved by considering thermal exchanges. As in

the case of single porosity, thermal effects do not act on the description of the flow, but
only modify mass balances. Therefore, the results obtained in the treatment of Navier­
Stokes equations in Section 3.1 are still valid here.

3.2.1. Macroscopic behaviour. In the pores and in the micropores, the governing
equations for heat transfer are the same as (24)-(25), but variables are now indexed by p
orm.

In comparison with the single porosity case, the description of thermal exchanges in
the pores is unchanged, i.e., the thermal skin is of the order of the pore size. Therefore, as
in Section 2.2., we have:

Due to the separation of scale, the micropore size is smaller than the thermal skin:
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The continuity of heat flux at the grain boundary implies that:

which shows that:

Now, in the solid the level of temperature is also given by the heat flux continuity:

4731

Because of the contrast in conductivities, it can be assumed, for simplicity, that the solid
remains in isothermal conditions (note that this hypothesis could be modified without
difficulties). This analysis leads to quasi-static exchanges at the microscopic scale. However,
in order to treat the largest frequency domain as possible, we keep in the transient terms at
the micropore scale. So we have:

These estimations yield the following scaled equations, where Land Tp are used as references
quantities:

Pm = pe (Pm +8-1 Tm)
pe Te

p = pe (Pp + Tp)
p pe Te

The temperature fields are looked for in the form of asymptotic expansions:

Tp(x, y) = eOT~(x, y) +e l T~(x, y) +e2T;(x, y) +...

Tm(x,y,z) = eIT~(x,y,z)+e2T~(x,y,z)+···

(69)

(70)

(71)

(72)

(73)

(74)

Firstly, the influence of thermal effects is derived by establishing the mass balance at both
scales, and then by determining the inter-scale coupling term.
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The following problems must be solved:

In the micropores :

T~/r' = 0

In the pores:

T~/r = 0

Both problems are similar to that defined by eqns (24) and (25) for the single porosity
problem.

The solutions are:

Now, considering eqns (71) and (72) at the first order yields:

which give for the average density variations:

(75)

(76)

These complex valued functions Gm and Gp play exactly the same role as the function G in
the single porosity case. Each of them is associated with a characteristic pulsation given
by:

The descriptions of the flow in the pores (59) and in the micropores (64) remain valid. But,
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considering equations (75)-(76), the mass balances (60)-(65) for the micropores and pores,
respectively, become:

A.'iOJ [1- (I-~)G]p~ +V"<VI) = 0'P Y m pe y m Q' (77)

(78)

Let us now determine the inter-scale coupling term. Equation (77) with the boundary
condition:

p~ = p~ onr

constitutes a boundary value problem in Os' This problem looks like the pressure diffusion
problem encountered in the preceding section [eqns (55) and (61)]. However, due to the
thermal non-equilibrium in the micropores, the diffusion coefficient is now complex and
frequency dependent. The solution is:

(79)

where l/! is complex and depends on y and also on the pulsation OJ and on both characteristic
pulsations OJm and OJd'

As for <Vy " v; )Q, it is derived using boundary condition (58), and integrating (77)
over Or while considering expression (59) :

I [( 1) J p~<V.. "V )Q=iOJ 1- 1-- Gm (1-'11)-
. P Y pe

where

Finally, the macroscopic behaviour is;

{1> [1- (1-DGp J+1>'(1-1» [1- (1-DGmJ(1-'¥)}; p~ - Vx"(~ Vxp~) = 0
(80)

3.2.2. Comments. Adding thermal effects alters description (67) by modifying the inter­
scale coupling term. Both thermal and pressure diffusion effects are now involved at the
micropore scale, which is particularly highlighted through the function 'II in which both
phenomena are mixed.

Thermal exchanges in the micropores introduce a new characteristic frequency OJ~,

and a function Gm whose physical meaning corresponds to those of OJ~and function G for
the pores, respectively. The expression given by equation (34) is valid when G is replaced
by Gm and OJ~by OJ~.

Although n and'll are different, they have the same limit values, '11(0) = 0 and
'11(00) = 1, and the same characteristics pulsation, OJd = Kmpe/A~fJ.1>'. However, for pul­
sations higher than W'm, the behaviours of n and'll are different because of the complex
valued diffusion coefficient. An expression which gives the correct asymptotic behaviour at
low and high frequencies is given below:
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Fig. 3. Real and imaginary parts of the complex-valued functions IT (diffusion) and 'I' (thermo­
diffusion), with respect to the dimensionless diffusion pulsation w~. Solid line: function IT. Dashed

line: function '1'.

where

Figure 3 shows the functions n and \I' with respect to the pulsation Wd for spherical grains.
From eqn (80) we deduce that for isotropic cases, the acoustic velocity is expressed by:

o iK*w* (l-¢)¢'c- = C~~-[(}'-(y-I))Gp+ rjJ (y-(y-I))Gm (l-IjJ)]-l
!XX)

In comparison with the acoustic velocity for the single porosity case (35), these results show
an increased dissipation at frequencies close to Wd and W em •

4. CONCLUSIONS

In this study, various macroscopic descriptions of sound propagation through a rigid
porous medium saturated by air are derived using homogenization theory. The results
presented are valid as long as the wavelength is large in comparison with the pore size.

The first part of the paper deals with single porosity materials. The case of large pores,
for which thermal exchanges are negligible [equations (20)-(23)] and then the case of small
pores where thermal effects must be considered [eqns (33)-(35)] have been successively
investigated. The derived descriptions are the same as those already obtained via phenom­
enological approaches (Allard, 1993; Attenborough, 1983). Air flow is governed by a
dynamic Darcy's law where both viscous and inertial effects act, and the effective com­
pressibility is influenced by thermal exchanges.

In the second part, we focus on dual porosity media, i.e. media in which the grains of
the skeleton are microporous. Let us notice that the results could also be applied to granular
media that consist of grains of very different sizes.
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Firstly, a simplified macroscopic description is obtained by neglecting heat transfer
effects (67). We demonstrate that, in the micropores, the physics of the flow is very different
to that in the pores. Due to the weak micropore permeability and to air compressibility,
the pressure is inhomogeneously diffused in the micropores. This phenomenon is associated
with a characteristic pulsation Wd, which is greater than the classical thennal and critical
pulsations (wt, wJ, that are defined for single porosity media. It is shown that the effect of
pressure diffusion implies increased acoustic attenuation for pulsations of the order of
magnitude of Wd'

When thermal transfers are included (80), a second thermal characteristic pulsation
associated with the micropore appears in the model, W tm , which is greater than W t• This
increases acoustic attenuation for pulsations close to W tm •

As a first example, let us determine the different characteristic pulsations for several
dual porosity media.

We consider a medium similar to porous road surfacing having a porosity, ¢ = 0.25,
a mean pore radius R of about 5 x 10- 3 m, an intrinsic permeability K = 10-9 m2

, and a
tortuosity of!Y.x; = 1.5.

The limit frequency for which waves are diffracted on the pores is reached when the
wavelength equals 2nR. In this specific case, one obtains a range of validity between 0 and
8 kHz for the description.

The numerical values lead to the following characteristic frequencies for the pores:

Wc /l¢
fc = -2 = 2 (0) ~ 430 Hz

n n!Y.x;K p

W t K
j; = - = ~ 1.2 Hz

2n 2nA2 pe ct p

Therefore, in the context of acoustics, the adiabatic approximation is valid for this material,
and the dissipation is mainly due to the viscosity.

Consider now the case where the grains of this material have also an open micro­
porosity, ¢' = 0.25, and the micropores are twenty times smaller than pores so that the
mean micropore radius is about 2.5 x 10-4 m. The intrinsic permeability can be estimated
as Km = 2.5 X 10- 12 m2

. These values lead to the following microporous characteristics
frequencies:

These frequencies belong to the acoustic domain. Therefore, one can expect two peaks of
attenuation (at these two frequencies).

Figure 4 shows the celerity with respect to the pulsation in such a medium. The influence
of the microporosity appears through the presence of a second peak. For comparison, the
celerities of two distinct single porosity media are presented: (i) the porosity is the pore
porosity only; (ii) the porosity is the global porosity. Note that these two single porosity
media and the dual porosity medium have the same static permeability and the same
tortuosity coefficient. These curves show significant differences between the models. As a
consequence, the three impedances are also different.

As a second example, consider the situation where we would like to increase the
absorption for frequencies of about I kHz. With the same open microporosity ¢' = 0.25,
a micropore radius of about 10-4 m can be chosen. The intrinsic penneability can be
estimated as K = 4 X 10- 13 m2• The values of microporous characteristic frequencies
become:



4736 C. Boutin et al.

Re(C/Ca), Im(C/Ca)

/I

fie

0.8

0.6
I

I
I

I
I

I
I

I
I

I
I

I

""" /" "" /" /-;./

,.",,#....
"' ....

/ / / ~ -;;;::..::-::..:::-:;.':;',:;,,;:,-=_:--=.~~~---­

""""

1m

Log(w *)
-2 -1 1 2 3

Fig. 4. Comparison between single porosity and dual porosity media. Real and imaginary parts of
complex-valued celerities, with respect to the dimensionless pulsation w*. Thick line; celerity of a
dual porosity medium (model given in 3.2, with numerical values considered in example I in the
conclusion). Thin line; celerity of a single porosity medium (pore porosity only). Dashed line:

celerity of a single porosity medium (pore plus micropore porosity).
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Fig. 5. Comparison between two distinct dual porosity media with the same pore structure but with
different permeabilities in the micropores. Real and imaginary parts of complex-valued celerities,
with respect to the dimensionless pulsation w*. Solid line: example 1 in the conclusion (km = k/400).

Dashed line: example 2 in the conclusion (km = k/2500).

fd ~ 815Hz

hm ~ 3kHz

Figure 5 shows the acoustic properties of both dual porosity media defined above.
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In conclusion, these results prove that the introduction of a microporosity could be
used to develop new porous materials, with improved of absorption in a given range of
frequencies.

REFERENCES

Allard, J. F. (1993) Propagation of Sound in Porous Media. Modelling Sound Absorbing Materials. Chapman and
Hall, London.

Allard, J. F., Herzog, P., Lafarge, D. and Tamura, M. (1993) Recent topics concerning the acoustics of fibrous
and porous materials. Applied Acoustics 39, 3-21.

Attenborough, K. (1983) Acoustical characteristics of rigid fibrous adsorbents and granular media. Journal of the
Acoustic Society of America. 73(3), 785-799.

Auriault, J. L. (1980) Dynamic behaviour of a porous media saturated by a Newtonian fluid. International Journal
of Engineering Science 18, 775-785.

Auriault, J. L. (1983) Effective macroscopic description for heat conduction in periodic composites. International
Journal of Heat and Mass Transfer 26(6),861-869.

Auriault, J. L. and Boutin, C. (1993-1994) Deformable porous media with double porosity. I: Quasi-statics; II:
Memory effects; III: Acoustics. T.I.P.M. 7, 63-82; 10, 153-169; 14, 143-162.

Auriault, J. L. and Royer, P. (1993) Ecoulement d'un gaz dans un milieu a double porosite. Compte Rendu ii
/'Academie des Sciences, Paris 317(11), 431-436.

Auriault, J. L., Borne, L. and Chambon, R. (1985) Dynamic of porous saturated media. Checking of the
generalized law of Darcy. Journal of the Acoustic Society of America 77,1641-1650.

Bar, P. and Delanne, Y. (1993) RMuire Ie bruit Pneumatique-Chaussees. LCPC, Presses des Ponts et Chaussees.
Barenblatt, G. I., Entov, V. M. and Ryzhik, V. M. (1960) On fundamental equations of :low of homogeneous

liquids in naturally fractured rocks. Dokl. Akad. Nauk., USSR 132(3), 545-548 (in Russian).
Biot, M. A. (1956) The theory of propagation of elastic waves in a fluid saturated porous solid, I. Low frequency

range, II. Higher frequency range. Journal of the Acoustic Society of America 28,168-191.
Boutin, C. (1994) Comportement macroscopique de materiaux heterogenes. These d'Habilitation, Universite

Joseph Fourier, Grenoble.
Boutin, C. and Auriault, J. L. (1990) Dynamic behaviour of porous media saturated by a viscoelastic fluid.

Application to bituminous concrete. International Journal ofEngineering Science 28( II), 1157-1181.
Boutin, C. and Auriault, J. L. (1993) Acoustic of Newtonian fluid at large bubble concentration. Eur. J. Mech.

B/Fluid 12(3), 367-399.
Boutin, C., Royer, P. and Auriault, J. L. (1996) Sound absorption of dry porous media with single and double

porosity. Ilth Con! Eng. Mech. Div.jASCE., May 1996, Fort Lauderdale, FL., pp. 796--799.
Champoux, Y. and Allard, J. F. (1991) Dynamic tortuosity and bulk modulus in air saturated porous media.

Journal ofApplied Physics 70,1975-1979.
Levy, T. (1979) Propagation of waves in a fluid saturated porous elastic solid. International Journal ofEngineering

Science 17,105-114.
Sheng, P. and Zhou, M.-Y. (1988) Dynamic permeability in porous media. Physical Review Letters 61(41),1591­

1594.
Royer, P. (1994) Contribution de l'homogeneisation a l'etude de la filtration d'un gaz dans un milieu deformable

adouble porosite-application aI'etude du systeme gaz-charbon. These de Doctorat, Universite Joseph Fourier,
Grenoble.

Royer, P. and Auriault, J. L. (1994) Transient quasi-static flow through a porous rigid medium with double
porosity. T./.P.M. 17(33), 33-57.

Royer, P., Auriault, J. L. and Boutin, C. (1996) Macroscopic modeling of double-porosity reservoirs. J. Pet. Sci.
En. 16, 187-202.

Sanchez-Palencia, E. (1980) Non-homogeneous Media and Vibration Theory. Lecture Note in Physics, 127. Springer­
Verlag, Berlin.


